A Search Algorithm for Global Optimisation
نویسندگان
چکیده
This paper investigates a global search optimisation technique, referred to as the repeated weighted boosting search. The proposed optimisation algorithm is extremely simple and easy to implement. Heuristic explanation is given for the global search capability of this technique. Comparison is made with the two better known and widely used global search techniques, known as the genetic algorithm and adaptive simulated annealing. The effectiveness of the proposed algorithm as a global optimiser is investigated through several examples.
منابع مشابه
Optimisation of assembly scheduling in VCIM systems using genetic algorithm
Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is ...
متن کاملImproved Cuckoo Search Algorithm for Global Optimization
The cuckoo search algorithm is a recently developedmeta-heuristic optimization algorithm, which is suitable forsolving optimization problems. To enhance the accuracy andconvergence rate of this algorithm, an improved cuckoo searchalgorithm is proposed in this paper. Normally, the parametersof the cuckoo search are kept constant. This may lead todecreasing the efficiency of the algorithm. To cop...
متن کاملLocation and Capacity of UPFC to Improve the Operation Power System Using a Grasshopper Optimisation Algorithm
Unified Power Flow Controller (UPFC) is one of the most efficient FACTS devices that can be individually or combinatorial on all effective parameters in the transmission power of the transmission lines. With the flexibility of effective parameters in power passage, the power system operation can be improved. in this study, the optimization algorithm based on location and optimal capacity of UPF...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملA Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms
In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...
متن کامل